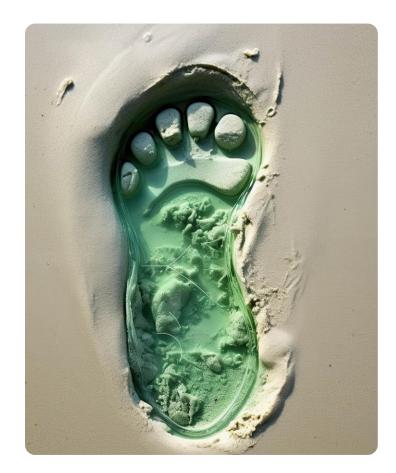



#### Plastic Footprint Network

Plastic Footprint Guidelines

# Module on microplastic from tires

Version 1. November 2023






Introduction to the Plastic Footprint Network

**Leading organizations** have united within the Plastic Footprint Network to chart a new, more effective **path toward plastic pollution** mitigation.

The network's first priority was **unifying the framework** for measuring plastic leakage into a **single**, **science-based methodology** for organizations to accurately assess the environmental impact of their plastic use. Over **100 professionals** from **35 organizations** worked to establish the resulting **methodology**, which consists of **11 modules**, all optimized for usability and delivery of **actionable results**.





#### Objectives

Unifying the methodologies and perspectives of leading scientists, experts, and global practitioners, PFN enables organizations to understand the full impact, or footprint, from the use of plastic in their companies, products, and services.

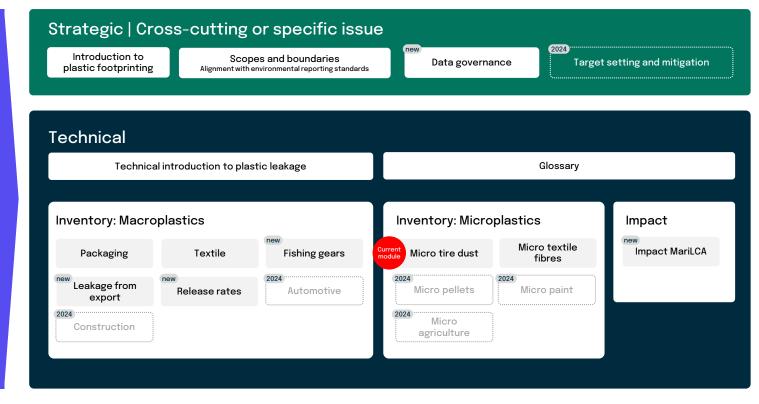




### What are the objectives of this module?

The goal of this module is to establish a standardized approach for evaluating the impact of microplastics derived from tire particles within the broader context of a plastic footprint. To achieve this, we will address the following key questions:




At the end of this module, the users should know how to include tire dust particles in their plastic footprint assessment.

of

This module aims to offer a comprehensive and contemporary methodology, based on a meticulous analysis of existing approaches and real-world scenarios, while highlighting the necessity for users to gather primary data to ensure a thorough evaluation of the impact of tire-derived microplastics within their plastic footprint analyses.



### Where does this module fit in the PFN landscape?





### Structure of each technical module



High level overview and different methodologies available at the moment, which one(s) to use and when.

Target audience: busy reader, scientific journalist

### System map and calculation routes

2

- The different elements to take into account during a plastic footprint.
- How these elements interact.
- The calculation routes to follow.

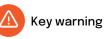
Target audience: scientist, experts

#### Key data & background assumptions

The secondary data needed to perform the assessment and the main assumptions for the modeling.

3

Target audience: scientist aiming at performing a plastic footprint.

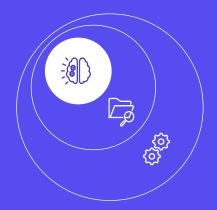

**Reading keys:** 

<u>}</u>

🖂 🛛 Main take away

6

Supporting information






#### Part.1

### Methodological choice

The different methodologies available at the moment, which one(s) to use and when.





Supporting information

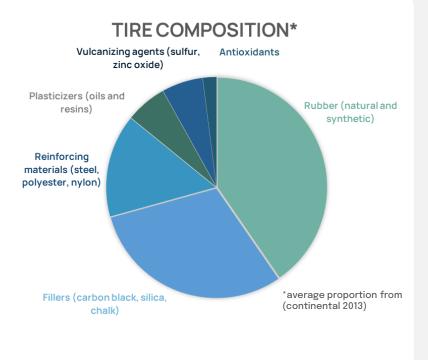
### **Useful definitions**

**EmF** = Emission factor

MP = Microplastic

**PM** = airborne particulate matter,

- $PM_{10}$  = PM with aerodynamic diameter below 10  $\mu$ m
- PM<sub>2.5</sub> = with aerodynamic diameter below 2.5 μm


**TRWP** = Tire and Road Wear Particles, "a complex mixture of tire tread fragment, pavement released due to tire during use on the road surface and road surface elements such as minerals and road dust" (Jekel 2019) (Baensch-Baltruschat, Kocher et al. 2020)

WWTP = Wastewater Treatment Plant

### An overview of micro tire particles

- Friction at the interface between the road pavement and the tyre tread provokes the abrasion of the latter.
- When rolling, temperature increases and the elastic and deformable rubber becomes sticky; thus minerals, road and other traffic-related particles may attach to it.
- With further wear and abrasion Tire and Road Wear Particles - a hetero-aggregate composed of particles from the tread and particles and dust from the road - are emitted to the environment.
- When abrasion of the tread mainly generates particles of coarse size (10 to 500  $\mu m$ ), volatilization of fine particulates (mainly PM\_{10} and PM\_{2.5}) is also possible on local hotspots on the tire.

The proportion of natural and synthetic rubber varies with the type of vehicle. For example, in truck tires 34% of the rubber is natural and 11% synthetic while in passenger cars, 19% is natural rubber and 24% is synthetic rubber (U.S. Tire Manufacturers Association 2020).



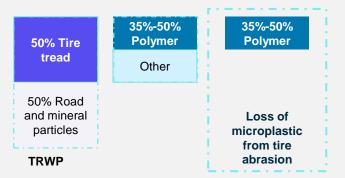
Source: Jekel 2019 and Baensch-Baltruschat, Kocher et al. 2020

### What are TRWPs

#### **Properties of TRWPs:**


- Cigar-shaped particles
- 90% of coarse particles (10 500  $\mu m$ ); 10% of particulate matter (PM $_{2.5}$  and PM $_{10})$
- Ratio of 50% tread wear 50% road wear
- Density ~ 1.8 g/cm<sup>3</sup>
- Composed of synthetic and natural rubber residues but also chemical additives, heavy metals

#### Are TRWPs microplastics?


- TRWP "consists of tyre tread enriched with mineral encrustations from the roadway surface." (ISO/TS, 2018).
- Microparticles with a polymer (rubber) matrix → microplastics



However, when assessing the microplastic leakage from tires, the focus is on the polymer share of the TRWPs (which represents 17.5 to 25% in mass of the TRWP) according to the assumed mass distribution.



Elongated "cigar-shaped" TRWP; source: Kreider et al., 2010





# How do microplastics from tires pollute the environment

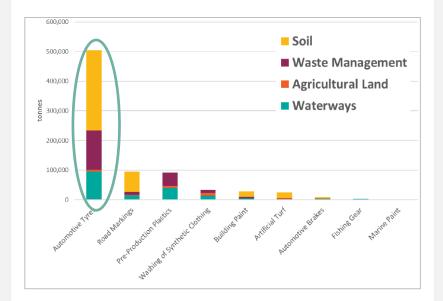


#### Leakage of microparticles during rolling

- From the road where they are emitted, tire microparticles may disperse and distribute into environmental compartments through different pathways including road runoffs, precipitation and wind circulation.
- Although partly treated in the wastewater treatment plants within urban areas, a large proportion of particles ultimately end up in natural media, namely the soil near roads, other terrestrial environments, freshwater (and eventually groundwater), sediments and the ocean.
- Hence, TRWPs as microplastics are ubiquitous in the environment and potentially induce adverse effects on natural organisms. For that reason, they have to be properly accounted for and we have to consider their contribution to the total environmental pollution caused by plastic materials.



Supporting information


### How big is the microplastic leakage from tires?

Among all the sources of microplastics in Europe, automotive tyres are the biggest contributor with more than 500 000 tonnes generated per year.

Tire abrasion is a major source of MPs emitted to the environment

The assessment of the microplastic leakage from tire particles is relevant in the context of the environmental impact assessment of road transport, especially the:

- Transport of passengers
- Transport of goods



Source: Annual generation and fate of microplastics from automotive tires compared to other microplastic sources from wear and tear in EU28; from Eunomia report (2017)

### **Useful definitions**

#### Activity/Mass

We identify the quantity of plastic of interest through an activity or a mass.

- For microplastics from tires, the tire abrasion rate is the relevant indicator. It refers to the mass of tread lost (by abrasion or volatilization) during the tire use phase.
- The emission factor (EmF) is defined after this abrasion rate and is given in mg/km.
- The loss rate from tires is defined as the mass of the tire lost which is microplastic. It is therefore calculated by multiplying the EmF by the share of polymer in the tire.

#### Release

Fraction of the plastic transferred from the loss to the environmental compartment. In this case, fraction of lost tire microparticles that are not captured by a WWTP and end into the oceans, or tire microparticles that are captured but ultimately released to soil.

Loss

Fraction of the plastic leaving the well managed system. In this case fraction of tire tread lost during rolling (use phase).

## Plastic leakage to the environment

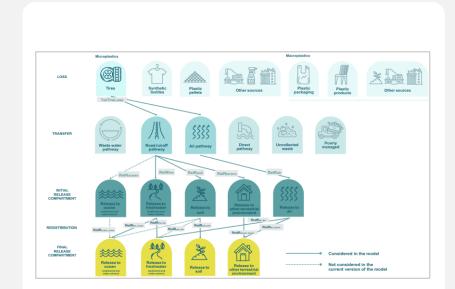
Plastic leakage is defined as the plastic potentially leaving the technosphere (human environment) and accumulating in the natural environment.



The term "emission factor" is widely used to describe a vehicle's emission performance which includes the exhaust and non-exhaust emissions. Still, here we only refer to microparticle emissions due to tire abrasion.

### Inspiration: Methodology from Plastic Leak Project

### Inventory of emissions for transport of goods and passengers:


- Based on tire wear abrasion rate
- For several vehicle classes: Passenger cars and light trucks, Medium/heavy trucks, Bus/coach, Motorcycle, Aircraft
- Two calculation routes are proposed: for "tire-related studies" and for "non-tire-related studies"

#### The PLP model is based on four phases:

- Loss first release (to initial environmental compartments) redistribution - final release (to final release compartments)
- First release and redistribution rates are based on (Unice, Weeber et al. 2019) which represent the European context.
- Redistribution: Because our compartments are already ocean and freshwater altogether, and soil and other terrestrial compartments altogether, we don't model the redistribution and we give release rates directly to the final compartments.

#### Improvements:

- ✓ We update the data collection for tire abrasion rate by reviewing new data sources.
- ✓ We propose specific EmFs according to the type of road (urban, rural or highway), to take into account parameters that influence the tire abrasion rate (combination of the nature of the pavement, road profile and driving speed).



Source: PLP - Section 8 - Inventory of microplastic leakage from tire abrasion - page 113, 114



### Simplified methodological approach

Simplified methodology to apply in case no information is available on the number of passenger and/or load of the vehicles

#### Primary data needed:

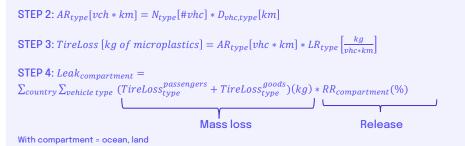
- Number of vehicles per type N<sub>type</sub>
- Distance travelled per vehicle and type D<sub>vehicle,type</sub>

#### Secondary data needed:

- Microplastic loss rate for each vehicle type LR<sub>vehicle,type</sub>
- Release rates by compartment  $RR_{compartment}$

Two calculation routes are proposed according to the desired level of detail: the first accounts for the traffic activity in terms of the number of vehicles and distances travelled while the second takes also into account the occupancy and load of vehicles for the transport of passengers or merchandise.

|   | $\bigcirc$ |
|---|------------|
|   | (1)        |
| 1 | $\smile$   |


The category or type of vehicle can be a passenger car, light-duty vehicle, etc.

The loss rate represents the mass lost by the tire that is microplastic.

It is important to look both at ocean and land for a full comprehension of the leakage.

#### Steps:

- 1. Collect primary data: the number of vehicles per type, and the distance travelled per vehicle and type.
- 2. Compute activity: Calculate the activity rate (AR) for each vehicle type
- 3. Compute mass: Calculate the mass of microplastic lost by tires for each vehicle type
- 4. Compute release: Multiply the lost mass with the release rates for the compartments of interest, which can be found in the excel file.



### PFN

### Detailed methodological approach

Detailed methodology to apply in case information is available on the number of passenger and/or load of the vehicles

#### Primary data needed:

- Number of vehicles per type N<sub>type</sub>
- Distance travelled per vehicle and type D<sub>vehicle,type</sub>
- Actual number of passengers,  $\rm Nb_{pass,type},$  or transported load,  $\rm M_{good,type},~per$  vehicle type

#### Secondary data needed:

- Microplastic loss rate for each vehicle type LR<sub>vehicle,type</sub>
- Average number of passengers,  ${\sf Pass}_{{\sf av},{\sf type}},$  or transported load,  ${\sf Load}_{{\sf av},{\sf type}},$  per vehicle type
- Release rates by compartment RR compartment



Two calculation routes are proposed according to the desired level of detail: the first accounts for the traffic activity in terms of the number of vehicles and distances travelled while the second takes also into account the occupancy and load of vehicles for the transport of passengers or merchandise.

The category or type of vehicle can be a passenger car, lightduty vehicle, etc

The loss rate represents the mass lost by the tire that is microplastic.

It is important to look both at ocean and land for a full comprehension of the leakage.

#### Steps:

- 1. Collect primary data: the number of vehicles per type, the distance travelled per vehicle and type and the number of passengers or loads of merchandise transported
- 2. Compute activity: Calculate the activity rate (AR) for each vehicle type
- 3. Calculate the occupancy or load parameter according to the type of transport and vehicle
- 4. Compute mass: Calculate the mass of microplastic lost by tires for each vehicle type

#### **STEP 2:** $AR_{type}[vch * km] = N_{type}[#vhc] * D_{vhc,type}[km]$

STEP 3: 
$$Occupancy_{type} = \frac{Nb_{pass,type}[#pers]}{Pass_{av,type}[#pers]}$$
 or  $Load_{type} = \frac{M_{good,type}[kg]}{Load_{av,type}[kg]}$ 

**STEP 4**: *TireLoss*<sup>pass</sup><sub>type</sub>[kg of microplastics] =  $AR_{type}[vhc * km] * LR_{type}\left[\frac{kg}{vhc * km}\right] * Occupancy_{type}$ 

**Or**  $TireLoss_{type}^{goods}[kg \ of \ microplastics] = AR_{type}[vhc * km] * LR_{type}\left[\frac{kg}{vhc * km}\right] * Load_{type}$ 

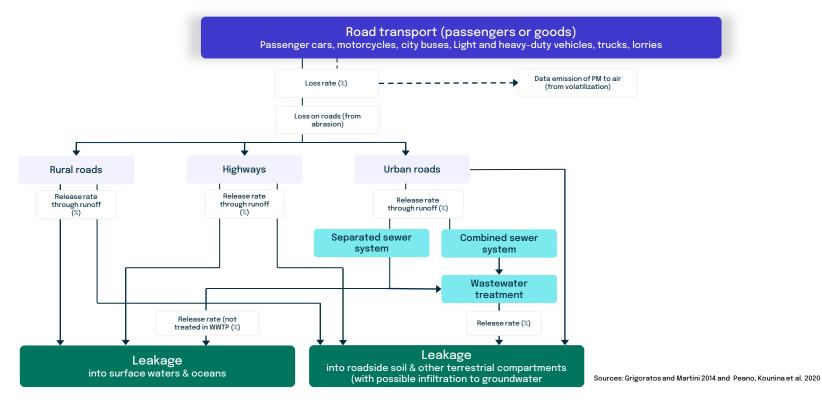
STEP 5: 
$$Leak_{compartment} = \sum_{country} (TireLoss_{type}^{passengers} + TireLoss_{type}^{goods})(kg) * RR_{compartment}(\%)$$
  
Mass loss Release

With compartment = ocean, land



Part. 2

# System map & calculation routes


The different elements to take into account during a plastic footprint. How these elements interact? Which calculation routes to follow?





### System map

The path of tire microparticles, from emission to final release:





### Calculation routes for tire microplastics - simplified approach



| Symbol                                                          | Description                                          |               | Unit Value R        |                                           | Additional comments                                                                                                                               |
|-----------------------------------------------------------------|------------------------------------------------------|---------------|---------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| N <sub>type</sub>                                               | Number of vehicle of a given category                | # vhc         | From primary data   | n/a                                       |                                                                                                                                                   |
| Distance travelled on the road by a vehicle of a given category |                                                      | km / vhc      | From primary data   | n/a                                       |                                                                                                                                                   |
| LR <sub>type</sub>                                              | Loss of microplastic from a tire of the vehicle type | mg / (vhc*km) | From secondary data | n/a                                       | The loss rates were calculated<br>for each vehicle category<br>from emission factors and<br>share of polymer in tires data<br>from the literature |
| <i>RR<sub>compartment</sub></i>                                 | Release rate to environmental<br>compartments        | %             | From secondary data | Values from the PLP<br>Guidelines results |                                                                                                                                                   |

### Calculation routes for tire microplastics - detailed approach



| Symbol                                                                                          | Description                                                                         | Unit          | Value                            | Reference                                     | Additional comments                                                                                                                            |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------|----------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of vehicle of a given category                                                           |                                                                                     | # vhc         | From primary data                | n/a                                           |                                                                                                                                                |
| $D_{vhc,type}$                                                                                  | Distance travelled on the road by a vehicle of a given category                     | km / vhc      | From primary data                | n/a                                           |                                                                                                                                                |
| <i>Occupancy</i> <sub>type</sub> Occupancy of the vehicle according to the number of passengers |                                                                                     | n/a           | To be calculated                 | n/a                                           |                                                                                                                                                |
| Load of the vehicle according to transportation of goods                                        |                                                                                     | n/a           | To be calculated                 | n/a                                           |                                                                                                                                                |
| LR <sub>type</sub>                                                                              | Loss of microplastic from a tire of the vehicle type                                | mg / (vhc*km) | From secondary data              | n/a                                           | The loss rates were calculated for each<br>vehicle category from emission factors<br>and share of polymer in tires data from the<br>literature |
| RR compartment                                                                                  | Release rate to environmental compartments                                          | %             | From secondary data              | Values from the PLP<br>Guidelines results     |                                                                                                                                                |
| $Nb_{pass,type}$                                                                                | Number of passenger transported over the distance $\mathcal{D}_{\textit{vhc,type}}$ | # pers        | From primary data (good to have) | n/a                                           |                                                                                                                                                |
| Pass <sub>av,type</sub>                                                                         | Average number of passengers for the vehicle type                                   | Pers/vhc      | From secondary data              | Values from the PLP Guidelines<br>(Table 8-7) | From Ecoinvent or expert judgement                                                                                                             |
| $M_{good,type}$                                                                                 | Mass of product transported over the distance $D_{\nu hc,type}$                     | Kg            | From primary data (good to have) | n/a                                           |                                                                                                                                                |
| $Load_{av,type}$                                                                                | Average transported load by the vehicle category                                    | Kg            | From secondary data              | Values from the PLP Guidelines                | Medium and heavy trucks:<br>12'000; Light trucks: 3'500 (from expert<br>judgement)                                                             |



Part. 3

## Data

The secondary data needed to perform the assessment.

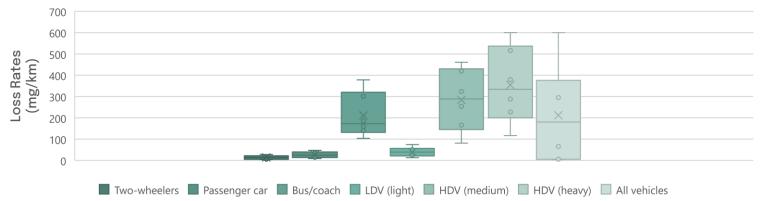




### Release rates - PLP and aggregation

Final release rates from PLP (2020) based on the results provided by Unice et al. (2019): still used in the current PFN methodology

| Abreviation           | Description                                                                        | Generic value<br>[% of TRWP emitted], or [% of<br>microplastic from tire abrasion] | Detailed description                                                                                                                                                                                                                                                                                                                                    |
|-----------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FinalRelRocean        | Final release rate of TRWP in<br>ocean (sediments and water<br>column) compartment | 2%                                                                                 | TRWP emitted in freshwater initial compartment and not deposited into sediments                                                                                                                                                                                                                                                                         |
| FinalRelRair          | Final release rate of TRWP in air compartment                                      | 0%                                                                                 | TRWP redistributed to freshwater and other terrestrial environment compartments                                                                                                                                                                                                                                                                         |
| FinalRelRfrw          | Final release rate of TRWP in freshwater (sediments and water column) compartment  | 15%                                                                                | <ul> <li>TRWP deposited in freshwater sediments, coming from:</li> <li>TRWP in runoff water going though separated system and directly released in freshwater</li> <li>TRWP in runoff water going through CSO of combined system</li> <li>TRWP in runoff water going through combined system but not retentate in wastewater treatment plant</li> </ul> |
| FinalRelRsoil         | Final release rate of TRWP in soil compartment                                     | 66%                                                                                | <ul> <li>TRWP captured in soil, coming from:</li> <li>TRWP deposited near road deposition</li> <li>TRWP in runoff water going through combined system, retentate in wastewater treatment plant and which sludge is spread on fields</li> <li>TRWP retentate in ditches</li> </ul>                                                                       |
| FinalRelRterenv       | Final release rate of TRWP in<br>other terrestrial<br>compartments                 | 4%                                                                                 | <ul> <li>Mismanaged waste from TRWP retentate in WWTP sludge not spread ; Mismanaged waste from TRWP retentate in stormwater management sludge</li> <li>TRWP initially released into air redistributed between freshwater and other terrestrial compartments</li> </ul>                                                                                 |
| Well managed<br>waste | Part of TRWP that is removed from the environment                                  | 14%                                                                                | <ul> <li>TRWP retentate in WWTP sludge not spread that is landfilled or incinerated</li> <li>TRWP retentate in stormwater management sludge that is landfilled or incinerated</li> </ul>                                                                                                                                                                |


Aggregated release rates used in the current PFN methodology

| Final release<br>to land  | Sum of release to soil and to terrestrial environment | 69% | These final release are built using the share of rural/urban/highway in the French context. For a more precise assessment these release rates need to be recalculat | nch |
|---------------------------|-------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Final release<br>to ocean | Sum of release to freshwater and to ocean             | 17% | based on the geography of interest.                                                                                                                                 | ea  |



### Loss rates - synthesis of the literature analysis

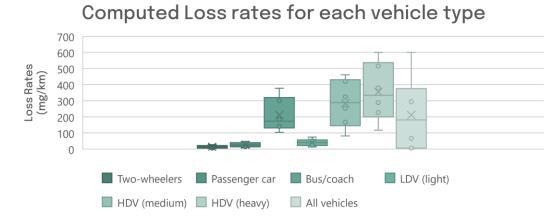
#### Computed Loss rates for each vehicle type



•

The loss rates were obtained by multiplying the emission factors of each vehicle type by their respective share of polymer in tires. For each vehicle category lower, central and upper values of LR are given to the user who can choose the most adapted one according to his own context.




The loss rates are communicated in terms of mg/(vhc\*km) for ease of reading (regarding the orders of magnitude), however, we must apply a 10-3 when calculating the Tire microplastic loss and the Leak to compartments in kg.

|               | LR<br>(example for<br>passenger cars | Unit        |
|---------------|--------------------------------------|-------------|
| Low value     | 22                                   | mg/(vhc*km) |
| Central value | 28                                   | mg/(vhc*km) |
| High value    | 37                                   | mg/(vhc*km) |



### Loss rates for tires - detailed results

| LR<br>[mg/(vhc*km)] | Transport of passengers              |      |             |              |             |              |     |
|---------------------|--------------------------------------|------|-------------|--------------|-------------|--------------|-----|
|                     | Two-wheelers Passenger car Bus/coach |      | LDV (light) | HDV (medium) | HDV (heavy) | All vehicles |     |
| MIN                 | 4                                    | 9    | 104         | 24           | 82          | 117          | 4   |
| Q1                  | 6                                    | 22   | 160         | 38           | 254         | 288          | 6   |
| MEDIAN              | 13                                   | 28   | 186         | 40           | 323         | 380          | 66  |
| Q3                  | 20                                   | 37   | 301         | 51           | 420         | 516          | 301 |
| MAX                 | 28,1                                 | 47,5 | 378,0       | 74           | 461         | 600          | 600 |
| AVERAGE             | 14                                   | 15   | 141         | 13           | 166         | 228          | 295 |
| Sample size         | 14                                   | 29   | 227         | 45           | 311         | 383          | 163 |



•

Emission factors for tires can vary depending on parameters like road type, driving speed, use of winter tires, and specific tire characteristics. However, there is no clear and direct correlation between these parameters and the EmFs, and subsequently, the loss rates.

To account for this variability, we offer average values of LR. These averages were calculated based on the emission factor values obtained from various sources in the literature.



### Limitations to the current methodology (1/2)

- The proposed quantification method exclusively considers the polymer component from the tire fraction of tire and road wear particles (TRWPs). It's important to note that if we were to include the mineral and road-based components of these particles, the total mass released into the environment would significantly increase. For instance, assuming TRWPs comprise an equal mix of 50% minerals from the road and 50% tire tread, the total particle mass would effectively double. As a result, the fate of the particles in the environment and the final release to land and ocean would be different as well.
- Consideration of parameters that influence the loss rate:
  - Several key factors affect tire wear and, consequently, the release of microplastic particles. These factors relate to tire characteristics (such as design, pressure, and geometry), vehicle characteristics (including weight, load, and driving behavior), road surface conditions (like material and roughness), and environmental factors (e.g., weather and road topology).
  - However, the relationships (and possible correlations) between those parameters and the wear rate are not established yet, except for vehicle type, where noticeable differences exist and which we can clearly distinguish.
  - The lack of experimental data and correlations is mainly due to the challenge of disentangling the effects of various parameters and environmental conditions. As a result, these parameters are currently not considered in the emission inventory.
- Aircraft are not considered in the current methodology as the focus is mostly on road transport which is considered to be the major contributor to microplastic pollution from tire abrasion.
- Emissions to air compartment: Within the system map, a direct emission flow to the air signifies the production of tire and road wear particles falling within the size range of airborne particulates, specifically below 10µm. These airborne particles make up roughly 10% of the total particles generated. These particles are anticipated to be transported through the atmosphere and eventually settle in the road, land, or water compartments, where they follow the same pathways as larger, coarse particles.
  - It's worth noting that these airborne particles, while part of tire and road wear, do not contain a polymeric component and consist of organic materials and heavy metals. As a result, they are not considered into the calculation of microplastic leakage.



### Limitations to the current methodology (2/2)

- Scope and application of the methodology: We present a methodology for calculating microplastic emissions from vehicle tires that
  is designed to be versatile and applicable to various geographic settings. To demonstrate the calculation process and ensure
  its comprehensiveness, we have included data from a study conducted in the Seine watershed by Unice et al. in 2019. It's important to
  note that while the provided data originates from a French context, which includes specific information about the distribution of road
  types and water treatment systems, the results in terms of release rates can serve as valuable proxies for a European context.
  This assumption is based on the expectation that the proportion of road types and the nature of water treatment systems in Europe
  will exhibit similarities to those in the French context. Nevertheless, it's advisable to exercise caution when applying these values to
  other contexts.
- As a result:
  - The category of the road (urban, rural, or highway) is important in considering the systems used to treat water runoff and the effectiveness of these treatments, which, in turn, impacts the release rates of tire microplastic particles.
  - In the current methodology, we did not gather or review data regarding the distribution of road types in various contexts and regions. Instead, we relied on data from the PLP guidelines, which itself is based on a single instance of release into freshwater.
  - It is important to note that the percentages representing the distribution of these road types are general averages and can be adjusted to match the specific geographical conditions of the area.



### References

- 1. Baensch-Baltruschat, B., et al. (2020). "Tyre and road wear particles (TRWP) A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment." Science of The Total Environment 733: 137823.
- 2. Continental (2013). Tyre Basics Passenger Car Tyres, Continental Reifen Deutschland GmbH.
- 3. Grigoratos, T. and G. J. R. E. Martini (2014). "Non-exhaust traffic related emissions. Brake and tyre wear PM." 26648.
- 4. Hann, S., Sherrington, C., Jamieson, O., Hickman, M., Kershaw, P., Bapasola, A., & Cole, G. J. R. f. D. E. o. t. E. C. (2018). Investigating options for reducing releases in the aquatic environment of microplastics emitted by (but not intentionally added in) products. 335.
- 5. Hartmann, N. B., et al. (2019). "Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris." Environmental Science & Technology 53(3): 1039-1047.
- 6. ISO/TS (2018). Rubber Generation and collection of tyre and road wear particles (TRWP) Road simulator laboratory method. 22638.
- 7. Jekel, M. (2019). Scientific report on Tyre and Road Wear Particles, TRWP, in the aquatic environment, European TRWP Platform.
- 8. Kole, P. J., et al. (2017). "Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment." Int J Environ Res Public Health 14(10).
- Kreider, M. L., Panko, J. M., McAtee, B. L., Sweet, L. I., & Finley, B. L. (2010). Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Science of The Total Environment, 408(3), 652-659. doi: <u>https://doi.org/10.1016/j.scitotenv.2009.10.016</u>
- 10. Ntziachristos, L. and P. Boulter (2016). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016. Road Transport Tyre and Brake Wear and Road Abrasion. EEA Report No 21/2016.
- 11. Peano, L., et al. (2020). Plastic Leak Project Methodological Guidelines, Quantis and EA. v1.3.
- 12. Pohrt, R. (2019). "Tire Wear Particle Hot Spots Review of Influencing Factors." Facta Universitatis, Series: Mechanical Engineering 17(1).
- 13. Unice, K. M., et al. (2019). "Characterizing export of land-based microplastics to the estuary Part I: Application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed." Science of The Total Environment 646: 1639-1649.
- 14. U. S. Tire Manufacturers Association. (2020). What's in a tire. Retrieved from https://www.ustires.org/whats-tire-0



### Our commitment to continuous improvement

The Plastic Footprint Network's successful collaboration is built on pillars of:

- Open
- Non-competitive and productive dialog
- Leveraging science and supporting ongoing research
- Broadly empowering global stakeholders (product manufactuers, brand owners, treaty negotiators, regulators, consultants, NGOs, etc) to effectively do their part to address the plastic pollution crisis.

Given corresponding commitments to transparency and continuous improvement, we welcome and encourage your feedback and input on this document so that the methodology can continue to be enhanced and refined.

Thank you for supporting the work of the Plastic Footprint Network.

Contact us at: <a href="mailto:contact@plasticfootprint.earth">contact@plasticfootprint.earth</a>



Our mission is to continuously advance Plastic Footprint Methodology, ensuring it remains at the forefront of sustainable practices and promoting its widespread adoption. By empowering companies to rigorously assess, enhance, and transparently report their plastic footprints, we aim to make significant strides in mitigating the plastic pollution crisis.



# Plastic Footprint Network

Specific mentions for this presentation: Louisa Ospital, CIRAIG Martina Gallato, EA Mathilde Geerts, Decathlon

The Plastic Footprint Network is convened by EA – Earth Action



This working group was led by: With the participation from: POLYTECHNIQUE MONTRÉAL ٢ MorIL<sup>®</sup>A CIRAIG evea earth action ea & **DECATHLON** Quantis **DECATHLON** PFN secretariat is led by 2023 members ampli**phi**. Anthesis CleanHub earth action south pole ea & CIRAIG ClimeCo Consultant Seas earth action evea **DECATHLON** Scientific Committee **GDFA** MarILtA **EVALUESERVE** POLYTECHNIQUE MONTRÉAL MARS P&G 실 Anthesis earth action ea PLASTIC CREDIT EXCHANGE Ouantis Removal Ouantis SYSTEMIQ Seven Clean Soas 🔕 rePurpose 2. Life South pole south pole SYSTEMIQ POLYTECHNIQUE MONTRÉAL CIRAIG Thai THE OCEAN RACE VERRA (;;; ZERQ PLASTIC OCEANS WWF





Illustrations by German Kopytkov







# Plastic Footprint Network

www.plasticfootprint.earth

contact@plasticfootprint.earth

